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Long-term homogenized air 
temperature and precipitation 
datasets in Romania, 1901–2023
Alexandru Dumitrescu   1 ✉, Dana Micu1, Jose Guijarro2, Ancuta Manea1 & Sorin Cheval1,3

In this study, we present RoClimHom, the first long-term homogenized dataset of daily air temperature 
and precipitation measurements for Romania, comprising mean (Tavg), maximum (Tmax), and 
minimum (Tmin) temperatures at 2 m height (T2m) and precipitation (PREC) from 156 weather stations 
spanning the 1901–2023 period. This work addresses the historical inconsistencies caused by changes 
in measurement techniques, station relocations, and operational practices. The homogenization 
methodology involved multiple stages, including data preprocessing, quality control, and breakpoint 
detection, resulting in a robust dataset that eliminates non-climatic biases. RoClimHom overcomes the 
potential biases in air temperature and precipitation measurements induced by changes in location, 
procedures, instruments, or personnel of the weather stations, which commonly influence natural 
climate variability. The new homogenized and gap-free climate dataset serves as an essential resource 
for academia and policymakers, facilitating climate change assessment and supporting a wide range of 
climate applications.

Background & Summary
Context and motivation.  Based on homogenized data series, sound knowledge about the observed climate 
variability over different time scales is crucial for detecting trends and constructing reliable climate projections. 
The long-term variability is currently well-documented over large areas of Europe and North America, taking 
benefits of centennial meteorological records1 or at least consistent coverage of the 20th century2–5. Numerous 
relevant products are available, consisting of long-term, spatially contiguous, and temporally consistent gridded 
meteorological datasets. These datasets are invaluable for understanding climate variability and change. They 
are widely applied in areas such as climate trend and extremes analysis, statistical downscaling, and hydrological 
modeling for climatological studies. Examples include global coverage and widely used climate datasets such as 
the Global Precipitation Climatology Centre dataset (GPCCD)6, Integrated Surface Database (ISD)7, Berkley 
Earth Land/Ocean Temperature8 dataset or the Climatic Research Unit Timeseries (CRU TS)9. Other notable 
examples include continental or regional scale datasets such as PNWNAmet (for North America)10, NRCANmet 
and the Adjusted and Homogenized Canadian Climate Data (AHCCD, for Canads)11 and EOBS (for Europe)12. 
Although some are available for shorter time periods, various gridded regional products have proven their impor-
tance for in depth climate change and variability analyses. Such examples include HISTALP (for the Greater 
Alpine Region)13, CARPATCLIM (for the Carpathian Region)14, ROCADA (for Romania)15. Such datasets pro-
vide high-resolution climate information tailored for specific geographic regions, enabling studies of regional 
climate patterns and trends. Studies addressing long-term climate variability also address other regions, such as 
Asia16,17 or Africa18, but many areas still lack decent continuous meteorological data series19. Satellite imagery 
has become an important and useful provider of climate or ancillary data20,21, but it covers discontinuously only 
the recent few decades and the results are mostly relevant for clear-sky conditions. The ground-based meas-
urements performed within established meteorological networks in agreement with the World Meteorological 
Organization’s (WMO) recommendations remain a valuable data source for climate research. The study of the 
mechanisms that control climate variability can provide relevant results only by using accurate data, including 
a well-documented understanding of the associated metadata. Changes in location, procedures, instruments, 
or personnel of the weather stations usually bias the natural variability of the climatic fluctuations that occur 
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without any human influence22. The extended development of climate applications and services focuses on using 
improved data23, to enhance outcome quality and facilitate user adoption. The provision of high-quality climate 
data sets for climate analyses is based on processing data in several steps, including network selection, quality 
control, homogenization, and validation24. Homogenization removes outliers, jumps, and artificial trends in sta-
tion time series due to non-climatic factors that may trigger inconsistencies in climate change analysis25. A few 
homogenization algorithms can be used to improve the homogeneity of climate data, and the selection of the 
methods depends on factors like the variable to analyse, the user’s experience, or the level of complexity of the 
technique26.

Homogenized data sets have been made available for many countries, and they support long-term analysis, 
focusing on different variables at various spatial and temporal resolutions. Air temperature (T2m) is most com-
monly treated27–29, but other variables have also been considered, such as precipitation (PREC)30,31, wind32–35, 
or humidity36,37.

The interest in homogenizing climate data series in Romania started at the beginning of the 2000s38, and 
homogenized data sets were used for the country-scale analysis of wind39, or for the regional study of T2m and 
PREC40. Homogenized gridded data sets of ten climate variables were made available for the Carpathian region, 
including about 2/3 of Romania, covering 1961–201014. Romania also has a comprehensive gridded homoge-
nized climate dataset known as ROCADA (ROmanian ClimAtic DAtaset), covering the period 1961–201315. 
Daily and sub-daily data homogenization for 2009–2017 was performed for T2m using four independent mete-
orological networks covering Romania and its surroundings41.

Considering the changes in measurement techniques, station relocations, and other factors that affected 
the meteorological network in Romania since the beginning of the measurements (i.e., the 19th century), the 
homogenization of the data sets is constantly required to ensure the consistency of the results.

This study aims to provide the first homogeneous, gap-free, country-wide data set from 1901 to 2023, which 
can be used for the long-term variability and trends analysis of T2m and PREC over the territory of Romania. 
This dataset is crucial for assessing climate variability and change in Romania, and it supports climate and 
climate-related applications, such as climate modelling, biodiversity or water resources studies. For example, 
the dataset is valuable for assessing the long-term variability of droughts at a regional level, as well as for under-
standing the migration of the isotherms under the climate change influence.

Schematic overview.  The RoClimHom homogenization procedure is based on a workflow that includes 
several stages needed to produce a high-quality, consistent, and robust climate dataset, as follows (Fig. 1):

	 (i)	 Data Input: Daily Tavg, Tmax, Tmin, and PREC data were collected from 156 weather stations across Ro-
mania, spanning the period 1901 to 2023.

	(ii)	 Data Preprocessing: Initial data cleaning and formatting were performed, including qaulity controll, 
handling missing values, and historical climate data was processed using period-specific methods for tem-
perature averaging and standardized precipitation measurements.

	(iii)	 Quality Control: The quality control process involved identifying and correcting outliers, ensuring that the 
data adhered to expected ranges and patterns for each variable.

	(iv)	 Homogenization: A key step in the study was the detection and correction of breakpoints—sudden chang-
es in the data caused by non-climatic factors such as station relocations or changes in instrumentation.

	(v)	 Trend Analysis: Once the data were homogenized, long-term trends in Tavg, Tmax, Tmin, and PREC were 
analysed. This step included both spatial and temporal assessments to understand climate variability across 
Romania.

	(vi)	 Comparison with other datasets: The homogenized data was validated against existing datasets, such as 
CRU TS (Climatic Research Unit gridded Time Series)9 and (ii) Global Historical Climatology Network 
monthly dataset (GHCNm)42.

	(vii)	Data Output: The final output is a set of homogeneous, gap-free time series for 156 weather stations cover-
ing the national territory of Romania (RoCliHom).

Potential applications.  This homogenized dataset, made publicly available, provides a unique resource with 
significant potential for scientific research and climate-related applications.

By addressing the historical inconsistencies in Romania’s climate data, this study fills a crucial gap in the 
availability of high-quality, long-term climate records. It provides a robust foundation for future climate research 
in Romania and beyond, offering insights into both the past and potential future climate dynamics of the region. 
It can be used to assess historical climate trends, climate scenarios data validation, and evaluate the impact of 
climate variability on various sectors such as agriculture, water resources, and energy.

Policymakers can leverage the data to develop climate adaptation and mitigation strategies tailored to 
Romania’s specific climate conditions. Additionally, the dataset could support regional studies, especially in the 
context of the broader Carpathian region, and contribute to global climate research efforts.

Methods
Study area and the historical development of the meteorological network.  This study encom-
passes Romania’s national territory. The topographic features of the country are reflected by a wide variety of 
landscapes and landforms, with altitudes ranging from 0 to 2,544 m.a.s.l., including the Carpathian Mountains, 
rolling hills, and low plains, with an equal share of 1/3 each (Fig. 2a).

The spatial distribution of the 156 weather stations evenly spans the entire territory of Romania, covering all 
altitude levels. The 70 stations used as reference stations (i.e., homogenization of the data subset containing the 
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long series) also follows an even spatial distribution of the homogenization process (see the section Study design 
and workflows) (Fig. 2a). Comprehensive metadata with the coordinates and altitude of the stations included in 
this study are provided in Supplementary information Table S1.

Daily mean (Tavg), maximum (Tmax), and minimum (Tmin) air temperature and precipitation (PREC) data 
available between 1901–2023 measured at 156 weather stations from the Romanian National Meteorological 
Administration Network, have been selected in the study. This study uses data from weather stations with at 
least 30 years of available daily measurements, covering the entire territory of Romania. The number of weather 

Fig. 1  Homogenization procedure and trend analysis workflow.

Fig. 2  Spatial distribution of weather stations, with the reference network indicated by filled triangles (a), and 
the evolution of the data availability at all stations after 1901 (b).
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stations operating according to the above-mentioned criterion on the Romanian territory over 1901–2023 is 
presented in Fig. 2b. During this period, the development of the national meteorological network has been 
shaped by some important biases: (a) two significant declines during the two world wars; (b) a rapid increase of 
the number of stations until the 1950s; c) implementation of new measurement standards starting 1961, while 
the network continued to expand steadily until the 1990s; (d) relatively stable number of stations from 1990 
to day; e) introduction of automatic measurements after 2001. A brief history of the development of the mete-
orological network over the study area is presented below. Data before 1901 are geographically sparser and less 
consistent, and they will be analysed in a further study.

On the current territory of Romania, the activity of meteorological measurements and observations started 
before the official establishment of the Romanian Meteorological Institute in 1884. For example, meteorological 
stations operated in Iasi (1770), Bucharest (1773), Cluj (1833), Alba Iulia, Sibiu (1843), Sulina, Oraviţa, Braşov, 
Baia Mare, Satu Mare (1857), Craiova (1881), Târgu Mureș, Arad, and Petrosani (1883). Some of these early 
records are no longer available today, but the observation points are still in the national surface network, even 
if their position has changed over time in an area of several square kilometers. Other observational points were 
established in the late 1800s and early 1900s, but they ceased their activity around 1960.

In other cases, even if some of these observational points were established as early as 1886 (Cumpana - Arges 
county), 1890 (Armasesti - Ialomita county), 1892 (Heresti - Ilfov county), 1895 (Casimcea - Tulcea county), 
1896 (Strehaia - Mehedinti county), 1897 (Draguseni - Covurlui/Galati county), 1898 (Isaccea - Tulcea county, 
Studina - Romanati/Olt county), 1899 (Govora - Vâlcea county, Babadag - Tulcea county, Ghimpati - Vlasca/
Giurgiu county), 1900 (Gaesti - Dambovita county), 1901 (Retivoiu - Prahova county, Faget - Prahova county, 
Rucar - Arges county), 1903 (Scropoasa - Dambovita county), 1904 (Perieti - Ialomita county), they did not 
function continuously, presenting large gaps (e.g.: Strehaia 1896–1916, 1927–1960; Studina 1898–1911, 1944–
1960; Govora 1899–1944, 1947–1953, 1955–1958). The majority of these stations ended their activity around 
the year 1960.

Due to the start of economic development, the public interest in meteorological information grew steadily 
and led to the establishment of the Romanian Meteorological Institute in 1884. Initially, the institute had as its 
main priorities the expansion of the surface observational network and the purchase of meteorological profes-
sional equipment. The development of the meteorological network was hindered by World Wars I and II, along 
with the economic crisis, leading to a slow increase in the number of stations and the discontinuation of mete-
orological activity in some areas.

In 1960, Romania’s surface network comprised 102 weather stations with synoptic programs and 230 weather 
stations with climatological programs, while the meteorological instruments and the methodologies used for 
data processing were not fully homogeneous. From 1961, all the stations adopted consistent meteorological 
manuals for observations and measurements and professional instruments, according to the technological 
development of the time. Between 2001 and 2015, all weather stations were equipped with automatic instru-
ments at least for measuring air temperature, air humidity, atmospheric pressure, wind direction and speed, and 
precipitation.

Data preprocessing.  The primary input consists of daily data extracted from the database of the National 
Meteorological Administration of Romania. For 1901–1960, the daily Tavg was derived as the average of three 
climatological observations taken at 06, 12, and 18 UTC, then a Köppen coefficient was applied, calculated based 
on the Tmin and month of the year. For 1961–2023, the daily Tavg was calculated as the arithmetic average of four 
climatological observations recorded at 00, 06, 12, and 18 UTC.

For the entire period of analysis, daily PREC was the total accumulation from 18 UTC on the previous day to 
18 UTC on the current day, with the timestamp corresponding to the end of the 24-hour accumulation period. 
Although the daily database has undergone rigorous quality control and validation procedures, as documented 
in previous studies15,41,43,44, validation is also performed before the homogenization, using the methodology 
implemented in Climatol.

The climatological database is subject to continuous quality control (QC) and validation: in near real-time 
for newly acquired data, and periodically for historical archives using various methods.

For near real-time QC of air temperature variables (T2m, Tmax, Tmin), values are checked against predefined 
limits, daily records, and neighboring stations. If any input data used in their calculation is flagged as suspect, the 
derived temperature values (e.g., monthly values) are also marked as suspect. Precipitation (PREC) validation 
ensures consistency between recorded amounts and precipitation type (e.g., PREC > 0 cannot coincide with “no 
precipitation” flags, and vice versa). It also verifies that daily PREC is not exceeded by shorter-interval accumu-
lated measurements (e.g., 1 h, 3 h, 6 h, or 12 h accumulations) from the preceding 24 hours. Violations of these 
criteria, such as daily PREC being less than accumulated sub-daily PREC or mismatched precipitation-type 
indicators, trigger data quality flags, prompting expert review.

For historical data, a suite of automated QC tests is implemented [41]. These include checks for: climatic lim-
its, temporal persistence, abrupt shifts (stepwise changes), and spatial consistency. These tests utilize historically 
derived thresholds, maximum acceptable changes, permissible step differences, and cross-validation based on 
a geostatistical multivariate interpolation method to flag potentially erroneous measurements. Specifically, data 
are flagged if values exceed climatological bounds, exhibit unrealistically low variability, display abrupt shifts, or 
deviate significantly from spatially interpolated estimates based on standardized statistical criteria.

The Climatol homogenization function works with normalized values to make observations comparable 
between different stations despite potential orographic effects. The recommended normalization is to divide 
precipitation values by the mean of the series and to standardize temperature data (remove the mean and divide 
by the standard deviation). All values in any series are estimated as the mean of the corresponding values in 
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nearby stations (always in normalized form). The estimated values are used either to fill in the missing data 
(undoing the normalization) or to calculate spatial anomalies. These anomalies are the basis for quality control 
by rejecting outliers that exceed a prescribed threshold.

In addition to the regular quality control performed on the climatological database, the Climatol 
quality-control procedure was also employed. This procedure uses histograms of standardized anomalies for all 
stations to optimize the thresholds for outlier rejection. As a result, 35 outliers were identified and subsequently 
checked against the archive of hard-copy tables. Based on expert judgment, only five outliers were confirmed: 
one for precipitation, two for average temperature, one for maximum temperature, and one for minimum tem-
perature. Although some anomalous data may reflect correct values due to local weather phenomena, we elimi-
nate them before homogenization to prevent unwanted perturbations in neighboring series. These data are later 
restored into the homogenized series.

Study design and workflows.  Quality control, data filling, and homogenization of the selected datasets 
utilised the R package Climatol, version 4.1.0. This package, which includes series homogenization and derived 
products, can be downloaded from the CRAN package repository (https://cran.r-project.org/package=climatol). 
In addition to meteorological records, Climatol utilises stations’ metadata such as coordinates and altitude45 and 
can also use reference series data processed from atmospheric reanalysis32.

The Climatol-based approach has proven to be effective in the homogenization of air temperature data28,46,47, 
solar radiation48, wind speed33, wind gusts32,49, and precipitation47,50. The approach has also been tested against 
benchmark datasets and has returned results that are comparable to the best other homogenization methods51,52. 
The method normalises the time series and identifies significant shifts (breakpoints) by running the standard 
normal homogeneity test (SNHT) on the differences between the observed data and the computed reference 
series. Overall, these studies demonstrate that Climatol is a valuable tool for performing homogenization of 
meteorological data and that the adjustments made by the software do not have a significant impact on the 
multiannual trends in the data.

Since the majority of the stations were established after the 1950s, we employed a two-step homogenization 
procedure:

	 (i)	 Step 1: homogenization of the data subset including 70 stations, and (ii) Step 2: homogenization of all 
stations’ data, using as reference the homogenized data obtained after Step 1.

First, a subset of 70 stations with long-term data availability covering the period from 1901 to 2023 was 
selected. This subset underwent quality control, gap-filling, and homogenization. Further, the long-term homog-
enized subset served as a reference series for the remaining 86 stations, which had limited data availability for 
the earlier part of the study period (1901–1960). A similar approach was used by Izsák et al.53. As shown in pre-
vious studies41,47, Climatol was initially applied to monthly data for each subset to enhance the homogenization 
results and identify breakpoints. Subsequently, at each station, the daily data were divided into homogeneous 
sub-periods based on the monthly breakpoints identified in the first stage, which were then filled and adjusted 
accordingly.

Based on the analysis of different homogenization results and SNHT histograms provided by Climatol, 
SNHT = 25 thresholds were used as a maximum for temperatures, as recommended by Guijarro (2024)54, and a 
threshold of SNHT = 15 for precipitation47,51.

The SNHT = 15, 25 thresholds are conservative values (for precipitation and temperature variables), trying 
to detect and correct most of the significant biases and avoiding false detections, at the cost of letting the smaller 
biases pass undetected. The monthly homogenizations were repeated with decreasing thresholds of SNHT = 22, 
19, and 16, resulting in a substantial increase in the number of detected breakpoints. However, as not knowing 
the true solution made it impossible to ascertain how many of them were false positives, the authors decided to 
keep the results obtained with the initial conservative threshold instead of breaking the series into a potentially 
excessive number of fragments.

To set the thresholds used for the outliers’ detection, we followed the procedure recommended by Guijaro54, 
based on analysing the histogram of standardised anomalies from the Climatol runs in exploratory mode.

For the technical validation of the homogenized dataset created, annual and seasonal trends were eval-
uated using the Theil–Sen nonparametric estimator, and the levels of significance were assessed with the 
Mann-Kendall test, as implemented in the EnvStats R package55.

Data Records
The dataset is available at the Zenodo repository56 with the following access link https://zenodo.org/
records/14880417.

The dataset is distributed in long-format CSV files, comprising roclihom_meta_1901_2023.csv for metadata 
and roclihom_data_1901_2023.csv for observational records.

Roclihom_data_1901_2023.csvt is structured in a way that each row contains the relevant variables at —tavg 
(average air temperature- °C), tmax (maximum air temperature - °C), tmin (minimum air temperature - °C), and 
prec (precipitation - mm)—along with corresponding flag columns. These flags indicate the status of the data as 
follows: 0 for original values, 1 for only gap-filled data, and 2 for corrected (homogenized) values. Additionally, 
the dataset includes a station identifier (id), as well as temporal information (Table 1).

The metadata file roclihom_meta_1901_2023.csv, contains details for each station, including station ids, 
geographical coordinates (in decimal degrees for both longitude and latitude), altitude (in meters), and station 
names.

https://doi.org/10.1038/s41597-025-05371-4
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Technical Validation
In this section, the technical quality of the new datasets is validated by assessing the impact of the homogeni-
zation procedure. This assessment involves analysing identified breakpoints, comparing trends derived from 
gap-filled only and homogenized data, and evaluating the influence of potential artificial jumps on the results. 
Additionally, the newly generated dataset is compared with previously published, similar climate data to further 
establish its reliability.

Breakpoints detection.  The number of breakpoints for each variable resulting from applying the homoge-
nization approaches is depicted in Fig. 3. The numbers of homogeneous time series are also shown on the graphs. 
In total, 1,512 breakpoints were detected across all variables, including 333 for PREC, 310 for Tavg, 496 for Tmin, 
and 373 for Tmax. Supplementary information Table S1 also presents the number of breakpoints detected by 
Climatol for each station and variable. The homogenization underscores the prevailing low-count breakpoints 
across all examined climatic variables, particularly for Tavg, where a single break is most commonly observed. 
The findings suggest that breakpoints are widely detected across the network, but higher counts of such events 
are relatively rare, especially for maximum and minimum temperatures. The broader range of break detections in 
Tmin highlights it as a parameter with potentially more complex temporal variability in the observed dataset than 
Tmax. For example, the 15 breakpoints detected in Tmin at one station (Craiova) are plausible, considering that, 
upon checking the metadata, the station was relocated 13 times, and the instrumentation was changed several 
times during the period analysed in this work (1901–2023).

Figure 4 details the number of breakpoints detected across the four climate variables analysed between 1901 
and 2023. The distribution of breakpoints by year and variable reveals significant anthropogenic influences 
across different periods, particularly in the mid-20th century, with marked spikes. The concentrated activity 
around specific periods suggests that these years have experienced notable non-climatic events or transitions, 
which could be an area for further investigation or cross-referencing with historical climate records. Overall, 
Tmin appears to be the most unstable variable, often showing a higher number of breakpoints, while PREC and 
Tmax also spike distinctly in certain years. For instance, certain years—such as 1939, 1959, and 2000—exhibit 
a particularly high number of breakpoints across all variables, indicating significant observation biases during 
these periods. These periods may be related to significant historical events or technological advancements, such 
as WWII, the implementation of new measurement standards in the early 1960s, or the introduction of auto-
matic weather stations at the beginning of the 2000s.

Trend analysis.  Following the development of the RoClimHom dataset, a trend analysis was performed to 
evaluate the annual and seasonal trends present in air temperature and precipitation parameters. This evaluation 
was conducted using the non-parametric Mann-Kendall test and the Theil-Sen slope estimator.

id year month variable value flag

425606 2023 12 prec 27.2 0

425606 2023 12 tavg 4.3 0

425606 2023 12 tmax 8.6 0

425606 2023 12 tmin 0.7 0

Table 1.  Sample of the dataset for station Bucuresti Baneasa as exrtacted from roclihom_data_1901_2023.csv file.

Fig. 3  Distribution of stations based on detected breakpoints in the PREC (a), Tavg (b), Tmin (c), and Tmax  
(d) time series.
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First, the trends were computed using two types of datasets: a Climatol-only gap-filled dataset and a 
Climatol-homogenized dataset. The purpose of this comparison was to assess the impact of homogenization on 
the detected trends by comparing the slopes derived from only the gap-filled data with those derived from the 
homogenized dataset.

Figure 5 reveals that the homogenization has reduced the magnitude and variability of trends, particularly for 
PREC and Tmax, which demonstrates that the homogenization methods effectively remove biases in the data. 
Gap-filling, on the other hand, might introduce bias due to the way missing data is filled. There is no evident 
change signal for PREC, although positive trends were computed for most stations (130 out of 156). The trends 
in T2m are positive in all variables (indicating warming), with some variations, which is consistent with other 
climate change studies57. Gap-filled data generally show a greater spread in the slope values, with wider inter-
quartile ranges and more outliers. Homogenized data have more consistent and less variable slopes, indicating a 
more stable trend than the raw, inhomogeneous data.

Spatial distribution maps of the annual Theil–Sen’s slopes and Mann-Kendall significance levels (p < 0.05 
filled circles) evaluated for homogenized PREC (%/decade), Tavg, Tmin, and Tmax (°C/decade) - confirm the 
previous trend analysis (Fig. 6). Positive trends in PREC were observed at most stations, but their magnitudes 
are generally weak, with statistically significant at only  two locations. Conversely, the strong positive trends in 
T2m are statistically significant across all stations and for all three temperature variables.

The PREC trends analysis reveals a predominance of positive trends, with approximately 83.3% of the ana-
lysed stations (130 out of 156) showing increasing slopes. This distribution suggests a general trend of increasing 
precipitation amounts at the regional level (Fig. 6a). The analysis of temperature trends across 156 stations 
reveals a consistent and statistically significant increase in Tavg, Tmin, and Tmax (Fig. 6b–d). Overall, the Tavg, 
Tmin, and Tmax trends strongly suggest that the observed increases are part of a broader pattern of climate 
change, consistent with other results at the continental level57. In this context, the data sets can be extremely 
useful in regional applications focusing on water deficit and excess, heatwaves or territorial planning.

Table 2 summarises the statistics of increasing and decreasing long-term trends for the four climate varia-
bles analysed in this study, highlighting both statistically significant (p-values < 0.05) and overall trends. PREC 
trends display more variation, with significant positive trends predominantly observed during winter (DJF) and 
summer (JJA), while autumn (SON) reveals a notable balance between positive and negative trends. In contrast, 

Fig. 4  Frequency of detected breakpoints along time in the PREC (a), Tavg (b), Tmin (c), and Tmax  
(d) time-series.

Fig. 5  Boxplots of the Theil–Sen’s slope computed for the gap-filled (first boxplot) and homogenized (second 
boxplot) yearly time series of PREC (a), Tavg (b), Tmin (c), and Tmax (d).

https://doi.org/10.1038/s41597-025-05371-4
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Fig. 6  Annual Theil–Sen’s slopes and Mann-Kendall significance levels (filled circles) evaluated on 
homogenised yearly time series of PREC (a), Tavg (b), Tmin (c), and Tmax (d) time-series.

Variable Time interval S* (+) S* (−) (+) (−)

PREC

Annual 1.28 0 83.3 16.7

DJF 7.69 4.49 75.0 24.4

JJA 9.62 1.92 64.7 35.3

MAM 1.28 1.28 69.9 29.5

SON 0.641 1.28 37.2 62.8

Tavg

Annual 100 0 100 0

DJF 92.9 0 100 0

JJA 99.4 0 100 0

MAM 93.6 0 100 0

SON 46.8 0 100 0

Tmin

Annual 100 0 100 0

DJF 100 0 100 0

JJA 98.7 0 100 0

MAM 100 0 100 0

SON 99.4 0 100 0

Tmax

Annual 100 0 100 0

DJF 98.7 0 100 0

JJA 90.4 0 100 0

MAM 82.7 0 95.5 2.56

SON 50 0 99.4 0

Table 2.  Percentage of stations revealing positive (+) and negative (−) trends in PREC, Tavg, Tmin, and Tmax 
(1901–2023). S* stands for significant trends (p-values < 0.05). The ‘no trend’ cases are not shown in this table.
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the trend statistics indicate a consistent increase in Tavg, Tmin, and Tmax across all seasons, with almost all 
trends exhibiting positive changes and no significant negative trends detected.

The country-scale average time series plots reveal no significant change in PREC, while Tavg, Tmax, and 
Tmin exhibit statistically significant increasing trends, indicating a general warming over the 20th century and 
the first decades of the 21st century (Fig. 7).

For PREC, the data points representing levels over time show a generally stable trend around 650 mm, with 
little to no slope, closely matching the multiannual mean of 652.9 mm. The p-value (0.355) suggests that the 
observed trend is not statistically significant, implying that there have been no significant changes in PREC over 
the given period (Fig. 7a). Tavg has increased over time, with the trend line showing a consistent upward trajec-
tory. The p-value (2.44e-08) indicates that the observed upward trend in Tavg is highly statistically significant, 
with a slope of 0.115 °C/decade (Fig. 7b). Tmin also exhibits an upward trend, with the red trend line showing a 
clear increase. The p-value is highly significant (2.12e-15), suggesting a robust upward trend in Tmin of 0.154 °C/
decade (Fig. 7c). The Tmax trend is similar to Tavg, namely less steep than the Tmin (0.128 °C/decade) (Fig. 7d).

It is worth noting that 2023 was characterised by exceptional climate events, such as the record-breaking 
maximum value of Tavg (11.3 °C at the country scale), or matching the record high values for Tmin (previous 
highest value 6.2 °C in 2019) and Tmax (previous highest value 16.9 °C in 2019).

Spatial distribution and time series trend plots for the seasonal subsets for each variable are shown in 
Supplementary Information (Figs. S1–S8).

Case study.  The advantages of using homogenized data sets for improving the consistency of the data by 
employing homogenization are explored using the Sinaia 1500 weather station case, where the site relocation 
biased the meteorological time series. The case study is also relevant for snow-related studies, as it shows the 
sensitivity of the data to site location. Metadata analysis indicates that the station was relocated at the end of 1960 
from Sinaia city, situated at approximately 786 m a.s.l., to a nearby location at a higher altitude, i.e., 1500 m a.s.l. 
(Fig. 8a,b). The raw data analysis highlighted a major shift in both air temperature (Tavg, Tmin and Tmax) and 
precipitation time series during the 60 s. For exemplification, Fig. 8c,d illustrate the inhomogeneities induced by 
site relocation in the Tavg time series.

This shift is identified in the running annual mean series of air temperature in February 1961 (SNHT value 
86). The two lines (green and orange) at the bottom of the breakpoint detection graphs represent the minimum 
distance between neighbouring data points (green) and the number of reference data points (orange), with a 
logarithmic scale applied to the right axis for these additional lines (Fig. 8c). The annual running mean of the 
reconstructed time series is depicted in the plot on the right side of the panel (Fig. 8d). Corrections applied to 
each time series are colour-coded at the bottom of the corresponding graph, while a black line represents the 
original time series. This relocation was detected not only in the Tavg time series but also in the Tmin and Tmax 
series (both in February 1961), as well as in the PREC time series (in November 1960). No long-term climato-
logical analysis could be conducted on the unhomogenized time series for this station. Notably, the computed 
Theil-Sen trend of the gap-filled Tavg data for the period 1901–2023 was negative, whereas the trend for homog-
enized data is positive, i.e., 0.103 °C/decade.

Comparison with other datasets.  The homogenized Tavg, Tmin, Tmax, and PREC datasets for 1961–2023 
produced over the weather stations in Romania were evaluated against existing datasets commonly employed in 
long-term climate analysis, specifically (i) CRU TS9 and (ii) GHCNm42. Comparing our dataset with CRU TS 

Fig. 7  Trends at the country level for PREC (a), Tavg (b), Tmin (c), and Tmax (d), computed from the 
homogenized dataset. All graphs include statistical information such as Mann-Kendall tau, p-value, and Theil-
Sen’s slopes, which provide quantitative measures of the trends’ significance and magnitude. Vertical red lines 
indicate when record-breaking air temperatures occurred, specifically in 2019 and 2023. The plots show the 
multiannual mean (1901–2023) for each variable as dark grey lines.
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and GHCNm provides a broader perspective on how different homogenization and optimization approaches 
influence the final outputs, offering insights into the reliability and consistency of our dataset in a global context. 
Although all three datasets ultimately originate from the same ground-based measurements (at least partially), 
the differences in homogenization and optimization procedures make them valuable benchmarks for validating 
our newly created dataset. Each dataset employs distinct methods for postprocessing, and evaluating our dataset 
against theirs provides an opportunity to assess the robustness of our approach.

CRU TS.  CRU TS is a global gridded dataset with a 0.5° latitude by 0.5° longitude resolution, covering all land 
domains of the world except Antarctica. It is generated by interpolating monthly climate anomalies derived from 
weather station measurements. Figure 9 presents temporal trend plots for the country-averaged variables ana-
lysed for both the homogenized and CRU TS datasets. PREC data show no statistically significant trend in either 
dataset, while T2m exhibits a strong, statistically significant warming trend for both datasets, very well aligned 
on the rate of change per decade. However, CRU TS values are slightly higher on multiannual means, indicating a 
greater warming pattern over the last century. The consistency observed in trends and statistical metrics between 
the homogenized weather station-based data and CRU TS dataset indicates a high level of agreement between the 
two datasets, specifically for Tmax and PREC. Differences in absolute values, which are more noticeable for Tavg 
and Tmin, could be explained by the fact that the gridded dataset uses data from a limited number of stations in 
the Romanian territory, i.e., 40. However, the similarity in trends - particularly the highly significant warming 
trends in T2m - suggests that both datasets capture the same underlying climate signal for Romania over the 
1901–2023 period.

GHCNm.  The GHCNm dataset offers monthly climate summaries compiled from numerous weather stations 
worldwide. The dataset was created in the early 1990s, with methodology updates released in 1997, and 2011, and 

Fig. 8  The location of the Sinaia weather station in Romania is shown in the upper left (a). The current location 
of the Sinaia station (1500 m a.s.l.) and its former location (1886–1960 at 786 m.a.s.l.) are shown in the upper 
right (b). In the lower left is shown the example of breakpoint detection at the Sinaia 1500 station, in the 
monthly average air temperature (c), and the lower right (d) depicted the two-time series reconstructions, for 
both homogeneous sub-periods (running annual means on Y-axis, shown by the green and red lines) along with 
the applied corrections (correction terms on Y-axis, relative to the original records shown by the black line) 
(plots extracted from the Climatol output).
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the latest versions in 2018 for air temperature58 and 2024 of precipitation59. The length of the stations’ time-series 
varies, with some of the earliest data being from the 18th century. While certain station records are historical and 
no longer receive updates, many are still active and provide timely updates that are valuable for climate monitor-
ing. The current iteration, GHCNm v4, includes average monthly temperature data and a beta version of monthly 
precipitation data.

For air temperature, 40 time series from weather stations covering Romanian territory were identified, 
whereas for precipitation, only 37 time series were identified in the GHCNm dataset. The scatterplots between 
the non-homogenized (Raw), homogenized, and GHCNm datasets over the stations in Romania were com-
pared, and several accuracy indicators were computed, such as Spearman correlation, mean absolute error 
(MAE), and relative root mean squared error (RRMSE).

The air temperature scatterplots (Fig. 10) illustrate a significant correlation among the GHCNm, homog-
enized, and raw temperature datasets, with only minor variations observed among the analysed pairs. While 
there is a strong agreement between the GHCNm and the homogenized datasets, the comparison with the raw 
data indicates that the homogenized dataset may be more reliable than the GHCNm. The discrepancies between 
the GHCNm and the Homogenized and Raw datasets can be attributed to the differing methodologies used 
in computing daily averages. In the homogenized and raw datasets, the average was calculated from synoptic 
observations taken at 00, 06, 12, and 18 UTC. In contrast, the GHCNm dataset utilized the average between 
Tmin and Tmax60.

Fig. 9  Trends at the country level for both the homogenized (Hom) and gridded CRU TS datasets (CRU), for 
PREC (a), Tavg (b), Tmin (c), and Tmax (d).

Fig. 10  Scatter plots comparing GHCN, homogenized (GHCN vs Homogenized (a)) and raw (GHCN vs Raw 
(b)) monthly average air temperatures by station ID. Additionally, the relationship between homogenized and 
raw data is also displayed (Homogenized vs Raw (c)).
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The comparison of GHCNm, homogenized, and raw precipitation datasets also reveal strong correla-
tions across all pairings (Spearman’s ≥ 0.989), indicating high consistency between the datasets (Fig. 11). The 
GHCNm vs. Raw data demonstrates the strongest agreement, which is expected considering that both datasets 
underwent only quality control, without any homogenization (adjustments) applied to them. Regarding the 
GHCNm vs. Homogenized dataset, while all comparisons exhibit robust correlations, some discrepancies are 
observed, particularly at higher precipitation values, which are due to the correction factors applied by the 
Climatol when breakpoints were detected and time series reconstructed.

To better understand the discrepancies unexplained by the corrections applied to the homogenized dataset, 
the differences between the GHCNm and Raw datasets are shown in Fig. 12. It can be seen that there are two 
periods with significant differences, both in terms of number and magnitude, namely before 1961 and after 2019, 
when the data points are highly scattered, with notable deviations from the baseline (0). Even if some differences 

Fig. 11  Scatter plots comparing GHCNm, homogenized (GHCNm vs Homogenized (a)) and raw (GHCN vs 
Raw (b)) monthly precipitation amounts by station ID. Additionally, the relationship between homogenized and 
raw data is also displayed (Homogenized vs Raw (c)).

Fig. 12  Differences over time (from 1901 to 2023) between GHCN and Raw monthly precipitation amounts 
by station ID. The years 1961 and 2019, which delineate the periods when the two datasets agree very well, are 
marked on the plot with red lines.
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may be explained by the different reconstruction methods applied to the two datasets, the clustering of the devi-
ations may be attributed to the methodology applied for generating the GHCNm data set. For the Raw dataset, 
the same measurement unit (mm) and computing method have been used consistently throughout the entire 
period (i.e., daily precipitation computed as the amount accumulated from 18 UTC to 18 UTC of consecutive 
days, and the timestamp attributed to the end of the accumulation period). However, for the GHCN data, it can-
not be found in the literature how the monthly values were derived or whether other measurement units were 
involved in the processing of the data.

These findings underscore the overall reliability and consistency of the dataset while highlighting potential 
areas for further investigation into the sources of differences in the different precipitation datasets.

Usage Notes
Important caveats.  Undetected Errors: Despite efforts to ensure data quality, undetected errors may still 
exist within the dataset. Users are advised to remain vigilant for any inconsistencies, particularly when extreme 
values are observed, and to report these to the authors to improve the dataset.

Data Homogeneity: Although the dataset includes homogenization steps (indicated by flag 2), some inho-
mogeneities may remain. Biases introduced by factors such as changes in measurement instruments, station 
relocations, or environmental changes around weather stations may not have been fully corrected.

Code availability
No custom code was used in the generation or processing of the datasets. The entire analysis was conducted 
using functions available in the R61 packages climatol45, sf62, terra63, EnvStats55, and ggplot264. These packages are 
distributed under open-source licenses and are publicly accessible via the Comprehensive R Archive Network 
(CRAN) at https://cran.r-project.org/.
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